Author Archives: Ryan Gyure

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498

Project Title: Autonomous Mappingece

Team 1412 Members:
Jeremy Hibbs, electrical and computer engineering
Travis Kibler, systems and industrial engineering
Jesse Odle, optical sciences and engineering
Rachel Powers, electrical and computer engineering
Thomas Schucker, electrical and computer engineering
Alex Warren, computer science

Sponsor: UA Department of Electrical and Computer Engineering

1412Team 1412, sponsored by the University of Arizona department of electrical and computer engineering, is creating a quad-copter to map buffelgrass for the Southern Arizona Buffelgrass Coordination Center, or SABCC.

The rapid spread of buffelgrass is a pressing environmental issue in the Sonoran Desert. Buffelgrass turns the fire-resistant desert into a flammable grassland and threatens to supplant native plants, such as the saguaro cactus and ironwood tree, and destroy habitat for wildlife, including the desert tortoise and mule deer.

“SABCC has volunteers who go out and visually mark and inspect buffelgrass locations. An alternative is to hire a private helicopter crew to take pictures of the grass. The volunteer work is time-consuming and labor-intensive; the helicopter option is expensive. The quad-copter we are building costs less, is safer and easier to use, and requires fewer people,” explained team member Travis Kibler.

“It navigates using GPS way-points, which we upload into the autopilot. The quad-copter autonomously takes off, flies to the way-points, avoiding any obstacles, and continues its mission. Once the images are taken, we upload them into software we are writing and stitch together the images to create a huge image map of the area.”

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498
Project Title: The Firebird UAV Honeywell Logo

Team 1424 Members:
Michael Bramer, mechanical engineering
Fabian De La Pena Montero, electrical and computer engineering
Elizabeth Greene, systems and industrial engineering
Zac Petruska, electrical and computer engineering
Claira Safi, electrical and computer engineering
Kyle Smith, mechanical engineering

Sponsor: Honeywell Aerospace

1424Team 1424, sponsored by Honeywell Aerospace, is developing a small tactical unmanned aerial vehicle to help firefighters quickly and efficiently get information about fires. The project builds on the military’s T-Hawk, applying that technology to a drone for commercial use.

“Firefighters have limited information available to them when they first show up at the scene of a fire. They station five crew members around the fire perimeter just to survey the fire itself,” said team member Lizzie Greene.

The drone will help diagnosis a fire with minimum personnel and greatly reduced risk.

“Our UAV will be launched from the fire truck before the team even arrives on the scene,” Greene said.

“The camera on the UAV will give them information such as the size of the fire, where it’s headed and how hot it’s burning. The UAV will also survey for any dangerous gases resulting from the fire.”

Additional design challenges included ensuring the drone could withstand temperatures of 200 degrees Fahrenheit and creating a control panel to help it stabilize in turbulent conditions.

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498

Title: Robotic Ordnance Neutralizer (RON)raytheon-logo

Team 1415 Members:
Elisa Duarte, systems and industrial engineering
Jeremy Gin, electrical and computer engineering
Jaime Lara Martinez, electrical and computer engineering
Mark Roche, electrical and computer engineering
Cassandra Kammerman, mechanical engineering
Greg Stanford, mechanical engineering

Sponsor: Raytheon Missile Systems

top prize teamTeam 1415, sponsored by Raytheon Missile Systems, is working on a Robotic Ordnance Neutralizer to trigger small, hard-to-find improvised explosive devices — known as “toe-poppers” for their low explosive charge — in the paths of soldiers on patrol.

“When troops traverse urban environments on combat missions, they often come across hidden, pressure-sensitive IEDs that can maim them,” said team member Elisa Duarte. “We are designing an unmanned ground vehicle system to neutralize hidden IEDs by applying a certain pressure to the ground as it moves along ahead of military personnel.”

The team is working on RON’s explosive neutralization mechanism and developing solutions for increasing the unmanned vehicle’s maximum speed from 3 miles per hour to 6 miles per hour. The vehicle is expected to cover a 5-foot-wide path, while still being able to pass through a standard-width doorway, and detonate the explosives from a safe distance of 15 feet.

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498
Project Title: Delivery of an Endovascular Device for a Bifurcating Vascular AnatomySDPM_0001_STBL

Team 1429 Members
Andrea Acuna, biomedical engineering
Sean Ashley, optical sciences and engineering
Matthew Davis, biomedical engineering
Matt Kirk, systems and industrial engineering
Marysol Luna, biomedical engineering
Carmelo Moraila, mechanical engineering

Sponsor: Jonathan Vande Geest, director of the UA Soft Tissue Biomechanics Laboratory

winner13Team 1429 is designing, fabricating and testing an endovascular device for the treatment of abdominal aortic aneurysm, known as AAA, which is an enlargement of the lower part of the aorta, a major blood vessel that runs from the heart through the center of the chest and abdomen. Treatments include open surgical repair and endovascular aortic repair, in which a stent graft is placed inside the aorta via a catheter to relieve pressure on the wall of the aorta.

As an alternative to the rigid metal mesh stents used to treat AAA, Jonathan Vande Geest, UA associate professor of aerospace and mechanical engineering and bioengineering, is working on a polymer that can be sprayed onto a 3-D printed construct taken from a CT scan of the patient’s aorta, which allows for the design of a flexible, patient-specific device.

“Currently, AAA is treated with rigid, metallic stent grafts that may not conform to the aorta of the patient,” Vande Geest said. “This leads to the exclusion of some patients who have an AAA that is anatomically complex and more difficult to treat.”

Although patients with AAA may show no symptoms, rupture of an abdominal aortic aneurysm can cause life-threatening internal bleeding. At least 13,000 deaths are attributed to AAA rupture in the United States every year.

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498

Project Title: Building a Smarter Gridtep_logo

Team 1404 Members:
Jacob Chess, mechanical engineering
Peter Lankisch, electrical and computer engineering
Viviana Llano, optical sciences and engineering
Daniel McLeod, electrical and computer engineering
Alex Moser, electrical and computer engineering
Eric Sahr, systems and industrial engineering

Sponsor: Tucson Electric Power

winner3UA Engineering Design Team 1404 is designing an autonomous aircraft for Tucson Electric Power to inspect transmission lines that handle energy flow from power plants to major substations, ultimately powering customers’ homes and businesses.

The autonomous aircraft will be equipped with multiple sensors to monitor the structural health of the transmission lines and check for “hot spots” caused by bad connections.

“Currently, the transmission lines are inspected by renting a helicopter and sending a crew to fly along the transmission lines, tower by tower,” said team member Alex Moser. “This is very time consuming, inefficient and expensive. Our goal is to provide utilities with a commercial system that is more capable than those they now use.”

University of Arizona, UA Senior Design Program, Senior Design, Engineering 498

SDPM_0012_SENSINTELProject Title: Aerodynamic Modeling, Measurements and Simulation

Team 1441 Members:
Christopher Drawert, aerospace engineering
Steven Goodyke, mechanical engineering
Rolland Prempeh, aerospace engineering
Daniel Simmons, mechanical engineering
Austin Taylor, systems and industrial engineering

Sponsor: Sensintel

student_post_sensitel1Team 1441 is expanding the capabilities of the wind tunnel in the University of Arizona’s aerospace and mechanical engineering department.

“We’re building a mount to allow a UAV to turn 90 degrees in the tunnel, keeping the neutral point of the aircraft in the center of the wind tunnel and minimizing interference effects on the edges of the plane,” said team member Daniel Simmons. “We transformed what was a simulation design into a more mechanical design using a five-component balance to get six degrees of freedom.”

Sensintel research scientist and 2013 UA alumnus Aaron Farber has been following the team’s progress.

“What these guys are doing — taking a five-scale balance and turning it into a six-degree balance — is remarkable. This piece of hardware will hopefully be able to be used by many teams and many research projects to come in the new AME wind tunnel,” he said. “You read a book, you do the math problems — it only gets you so far. This is a great opportunity to get the students into a real-world experience where they’re able to understand what all their class and lab work has been going toward.”

Added team member Christopher Drawert, “It’s nice to work with other engineers you haven’t worked with before. This is going to be really useful when we enter the workforce.”