Monthly Archives: April 2017

Engineering affects virtually every aspect of our lives, and at the University of Arizona’s Engineering Design Day on May 1, more than 500 students intend to prove it.

The public is invited to see the displays in the Student Union Memorial Center Grand Ballroom and on the UA Mall from 11 a.m. until 4 p.m., and to attend the awards ceremony in the ballroom from 4 to 5:30 p.m., when industry sponsors will present more than $25,000 in cash prizes to project teams.

Laura Haferkamp of Team 16022 shows how Team 16022's custom-designed and machined clamps will interface with the Unbreakable Fiber Optic cable.

Project Title: Bifurcated Fiber Optic Cable System for Orion Spacecraft Heat Shield Spectrometer

Team 16022 Members:
David Greif, mechanical engineering
Laura Haferkamp, materials science and engineering
Giuseppe Lo Voi, electrical and computer engineering
Kyel Powell, systems engineering
Andrew Rocha, optical sciences and engineering (team lead)

Sponsor: NASA

Unbreakable Fiber Optic to Test Orion Reentry Capabilities

Team 16022 members with the 6-meter fiber optic cable that they'll use for building the UFO system.Team 16022 is working on a UFO for NASA – an Unbreakable Fiber Optic, that is. The custom fiber optic cable assembly is intended for the upcoming NASA Exploration Mission 1 to test Orion spacecraft reentry capabilities.

The UFO system will be attached to Orion’s heat shield to propagate spectral data through a sapphire rod for spectrometer analysis on the ground. The data will provide information about the chemistry of ionized gases and ablated heat shield material.

American Institute of Aeronautics and Astronautics Recognition

Team UFO has already gained renown beyond the UA campus. Team lead Andrew Rocha joined with Laura Haferkamp and Giuseppe Lo Voi for a second place-winning presentation in March at the AIAA Region VI Student Paper Conference at San Jose State University. The paper, which was co-authored by all five team members, earned a $300 prize.

The trio’s visit to San Jose included meeting astronaut Dan Bursch, a veteran of three space shuttle flights and service on the International Space Station, and visits to NASA’s Ames Research Center and the Intel Museum.

This is the first group to be invited to present a paper during the school year, said Doug May, the team’s Engineering Design Program mentor.

Testing and Construction

Laura Haferkamp shows how Team 16022's custom-designed and machined clamps will interface with the Unbreakable Fiber Optic cable.The prototype, which will be on display May 1 during Design Day 2017, consists of a bifurcated, space-rated and verified broadband transmission optical fiber that uses two loose outer jackets. The cable is supported by student-designed aluminum clamps lined with silicone foam. Each of two cable legs terminate in spectrometer ports.

Vibration and shock testing is being performed at Orbital ATK in Chandler, and heat, humidity and pressure testing at the UA’s Arizona Materials Laboratory.

NASA, which is designing and building its own system, expects to have a final version of the alternate designs installed in Orion’s mid-bay area, between the crew cabin and the thermal protection area.

Project Title: Robotic Data Center

MicrosoftTeam 16035 Members:
Abdulrahman Alrashidi, industrial engineering
Daniel Bird, mechanical engineering
Jeni Dye, electrical and computer engineering
Dako Lesman, systems engineering
Marco Tipitto, mechanical engineering (team lead)

Sponsor: Microsoft

Design Program Experience Mixture of Internship, Job Interview

With a tool to justify the adoption of robotics and hardware automation, members of Team 16035 are helping make modern data centers truly modern while nailing down career options.

Modern data centers are massive complexes of multiple buildings containing hundreds of thousands of servers. A rack of 40 servers weighs in at 4,000 pounds. Each server includes a motherboard, power supplies and many hard drives, all of which require energy, cooling, monitoring, maintenance and repair.

Safety is difficult to ensure in a building generating 40 megawatts of heat and distributing 40 megawatts of electric power, where hundreds of disk drives fail each day and must be transported to shredders. Security is hard to guarantee in centers where each employee is surrounded by petabytes of customer data. And, in a business where accuracy is paramount yet focusing on the correct rack, server, disk drive or fiber optic cable can be mentally challenging, it’s easy to get the details wrong.

It’s no wonder the industry is under pressure to improve safety, security and accuracy while increasing cloud computing and data transmission speeds, advancements that typically call for robotics and hardware automation. But data centers have been slow to adopt these technologies.

Team 16035 is using Microsoft’s Power BI software to create a decision tool for incorporating robotics into data centers. The model compares cost and performance of various configurations to help Microsoft plan data centers with features such as robotic maintenance.

Users input requirements such as size and location, and the tool outputs optimal design specifications, projected costs and a 3-D SolidWorks representation of the data center. The model performs its calculations by retrieving official data from the internet and combining it with input and previously saved data.

With Design Day 2017 only weeks away, Team 16035 is putting finishing touches on the data center planning model, like adding a module that incorporates all 41,719 U.S. ZIP codes to use for obtaining climate information.

The quintet has had extensive contact with Microsoft, including a winter-break visit to company headquarters in Redmond, Washington, and a road trip to Quincy with collaborating employees during a six-hour snowstorm. The small town in central Washington is home to data centers operated by Microsoft, Intuit, Dell, Yahoo! and other tech giants, all drawn by abundant, low-cost renewable power and a high concentration of installed fiber optic.

“They’re really challenging us,” said team member Dako Lesman, adding that the project feels like “a combination job interview and internship.” Lesman and two teammates have Microsoft on their short lists of future employers.

You spoke, and we listened – and we want to hear more! The new app for UA Engineering Design Day 2017 is going social.

Our teams have been working hard all year on a diverse array of interdisciplinary, including technology to detect and disable drones, a lift system to help haul loads in hillside towns, and a tag device that local 911 networks can use to connect to in-home cardiac defibrillators during emergencies.

Get the app, and get access to these and more than 100 other Design Day projects, student profiles and award descriptions.

New this year: Share your activity with friends on social media channels like Twitter, directly from the app!

Download the free UA College of Engineering mobile app, available in the App Store for Apple’s iOS devices and the Google Play Store for Android devices.

App Store

For iOS devices, like iPhone and iPad

Google Play

For Android devices, like Samsung Galaxy